首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6134篇
  免费   1378篇
  国内免费   1387篇
测绘学   104篇
大气科学   3263篇
地球物理   1311篇
地质学   1580篇
海洋学   394篇
天文学   169篇
综合类   220篇
自然地理   1858篇
  2024年   12篇
  2023年   80篇
  2022年   197篇
  2021年   293篇
  2020年   293篇
  2019年   299篇
  2018年   283篇
  2017年   310篇
  2016年   329篇
  2015年   342篇
  2014年   421篇
  2013年   800篇
  2012年   428篇
  2011年   395篇
  2010年   382篇
  2009年   457篇
  2008年   486篇
  2007年   457篇
  2006年   383篇
  2005年   348篇
  2004年   284篇
  2003年   274篇
  2002年   240篇
  2001年   184篇
  2000年   157篇
  1999年   134篇
  1998年   137篇
  1997年   115篇
  1996年   94篇
  1995年   73篇
  1994年   51篇
  1993年   39篇
  1992年   36篇
  1991年   21篇
  1990年   16篇
  1989年   8篇
  1988年   13篇
  1987年   9篇
  1986年   10篇
  1985年   4篇
  1983年   3篇
  1982年   2篇
排序方式: 共有8899条查询结果,搜索用时 15 毫秒
101.
为探究地表覆盖与气候状态间的关联性,本文选取2019年的Landsat影像数据,结合温度、降水量、PM2.5浓度3种气候指标,利用GEE平台,结合NDVI、MNDWI、NDBI,采用SVM、RF、CART方法进行地表覆盖分类,探究气候指标与地表覆盖类型分布的关联性;提出了使用3种气候指标构建分类特征进行地表覆盖分类的方法,并通过消融试验分析了气候指标对地表覆盖分类精度的影响。结果表明:①RF有较好的分类结果,总体精度为96.0%;②3种气候指标均能提高地表覆盖分类精度,其中PM2.5浓度效果最好;③温度与植被、水体关联性较大,PM2.5浓度与城区、植被关联性较大,降水量与耕地关联性较大。  相似文献   
102.
The seasonal prediction of sea surface temperature(SST) and precipitation in the North Pacific based on the hindcast results of The First Institute of Oceanography Earth System Model(FIO-ESM) is assessed in this study.The Ensemble Adjusted Kalman Filter assimilation scheme is used to generate initial conditions, which are shown to be reliable by comparison with the observations. Based on this comparison, we analyze the FIO-ESM 6-month hindcast results starting from each month of 1993–2013. The model exhibits high SST prediction skills over most of the North Pacific for two seasons in advance. Furthermore, it remains skillful at long lead times for midlatitudes. The reliable prediction of SST can transfer fairly well to precipitation prediction via air-sea interactions.The average skill of the North Pacific variability(NPV) index from 1 to 6 months lead is as high as 0.72(0.55) when El Ni?o-Southern Oscillation and NPV are in phase(out of phase) at initial conditions. The prediction skill of the NPV index of FIO-ESM is improved by 11.6%(23.6%) over the Climate Forecast System, Version 2. For seasonal dependence, the skill of FIO-ESM is higher than the skill of persistence prediction in the later period of prediction.  相似文献   
103.
The root‐zone moisture replenishment mechanisms are key unknowns required to understand soil hydrological processes and water sources used by plants. Temporal patterns of root‐zone moisture replenishment reflect wetting events that contribute to plant growth and survival and to catchment water yield. In this study, stable oxygen and hydrogen isotopes of twigs and throughfall were continuously monitored to characterize the seasonal variations of the root‐zone moisture replenishment in a native vegetated catchment under Mediterranean climate in South Australia. The two studied hillslopes (the north‐facing slope [NFS] and the south‐facing slope [SFS]) had different environmental conditions with opposite aspects. The twig and throughfall samples were collected every ~20 days over 1 year on both hillslopes. The root‐zone moisture replenishment, defined as percentage of newly replenished root‐zone moisture as a complement to antecedent moisture for plant use, calculated by an isotope balance model, was about zero (±25% for the NFS and ± 15% for the SFS) at the end of the wet season (October), increased to almost 100% (±26% for the NFS and ± 29% for the SFS) after the dry season (April and May), then decreased close to zero (±24% for the NFS and ± 28% for the SFS) in the middle of the following wet season (August). This seasonal pattern of root‐zone moisture replenishment suggests that the very first rainfall events of the wet season were significant for soil moisture replenishment and supported the plants over wet and subsequent dry seasons, and that NFS completed replenishment over a longer time than SFS in the wet season and depleted the root zone moisture quicker in the dry season. The stable oxygen isotope composition of the intraevent samples and twigs further confirms that rain water in the late wet season contributed little to root‐zone moisture. This study highlights the significant role of the very first rain events in the early wet season for ecosystem and provides insights to understanding ecohydrological separation, catchment water yield, and vegetation response to climate changes.  相似文献   
104.
Ensemble modelling was used to assess the robustness of projected impacts of pumped‐storage (PS) operation and climate change on reservoir ice cover. To this end, three one‐dimensional and a two‐dimensional laterally averaged hydrodynamic model were set up. For the latter, the strength of the impacts with increasing distance from the dam was also investigated. Climate change effects were simulated by forcing the models with 150 years of synthetic meteorological time series created with a weather generator based on available air temperature scenarios for Switzerland. Future climate by the end of the 21st century was projected to shorten the ice‐covered period by ~2 months and decrease ice thicknesses by ~13 cm. Under current climate conditions, the ice cover would already be affected by extended PS operation. For example, the average probability of ice coverage on a specific day was projected to decrease by ~13% for current climate and could further be reduced from ~45% to ~10% for future climate. Overall, the results of all models were consistent. Although the number of winters without ice cover was projected to increase for all one‐dimensional models, studying individual segments of the two‐dimensional model showed that the impact was pronounced for segments close to the PS intake/outlet. In summary, the reservoir's ice cover is expected to partially vanish with higher probability of open water conditions closer to the PS intake/outlet.  相似文献   
105.
The cartographic representation of geographic phenomena in the space–time cube comes with special challenges and opportunities when compared with two-dimensional maps. While the added dimension allows the display of attributes that vary with time, it is difficult to display rapidly varying temporal data given the limited display height. In this study, we adapt 2D cyclic point symbols to construct 3D surfaces designed along a helical path for the space–time cube. We demonstrate how these complex?3D helical surfaces can display detailed data, including data reported daily over 100 years and data reported in four-hour intervals over a year. To create the point symbols, each value is plotted along the curve of a helix, with each turn of the helix representing one year or week, respectively. The model is modified by varying the radii from the time axis to all points using the attribute value, in these cases maximum daily temperature and four-hourly ridership, and then creating a triangulated surface from the resulting points. Using techniques common to terrain representation, we apply hue and saturation to the surface based on attribute values, and lightness based on relief shading. Multiple surfaces can be displayed in a space–time cube with a consistent time interval facing the viewer, and the surfaces or viewer perspective can be rotated to display synchronized variations. We see this method as one example of how cartographic design can refine or enhance operations in the space–time cube.  相似文献   
106.
Considerable debate revolves around the relative importance of rock type, tectonics, and climate in creating the architecture of the critical zone. We demonstrate the importance of climate and in particular the rate of water recharge to the subsurface, using numerical models that incorporate hydrologic flowpaths, chemical weathering, and geomorphic rules for soil production and transport. We track alterations in both solid phase (plagioclase to clay) and water chemistry along hydrologic flowpaths that include lateral flow beneath the water table. To isolate the role of recharge, we simulate dry and wet cases and prescribe identical landscape evolution rules. The weathering patterns that develop differ dramatically beneath the resulting parabolic interfluves. In the dry case, incomplete weathering is shallow and surface parallel, whereas in the wet case, intense weathering occurs to depths approximating the base of the bounding channels, well below the water table. Exploration of intermediate cases reveals that the weathering state of the subsurface is strongly governed by the ratio of the rate of advance of the weathering front itself controlled by the water input rate, and the rate of erosion of the landscape. The system transitions between these end‐member behaviours rather abruptly at a weathering front speed ‐ erosion rate ratio of approximately 1. Although there are undoubtedly direct roles for tectonics and rock type in critical zone architecture, and yet more likely feedbacks between these and climate, we show here that differences in hillslope‐scale weathering patterns can be strongly controlled by climate.  相似文献   
107.
The New England and Mid‐Atlantic regions of the Northeast United States have experienced climate‐induced increases in both the magnitude and frequency of floods. However, a detailed understanding of flood seasonality across these regions, and how flood seasonality may have changed over the instrumental record, has not been established. The annual timing of river floods reflects the flood‐generating mechanisms operating in a basin, and many aquatic and riparian organisms are adapted to flood seasonality, as are human uses of river channels and flood plains. Changes in flood seasonality may indicate changes in flood‐generating mechanisms, and their interactions, with important implications for habitats, flood plain infrastructure, and human communities. I applied a probabilistic method for identifying flood seasons at a monthly resolution for 90 Northeast U.S. watersheds with natural, or near‐natural, flood‐generating conditions. Historical trends in flood seasonality were also investigated. Analyses were based on peaks‐over‐threshold flood records that have, on average, 85 years of data and three peaks per year—thus providing more information about flood seasonality than annual maximums. The results show rich detail about annual flood timing across the region with each site having a unique pattern of monthly flood occurrence. However, a much smaller number of dominant seasonal patterns emerged when contiguous flood‐rich months were classified into commonly recognized seasons (e.g., Mar–May, spring). The dominant seasonal patterns identified by manual classification were corroborated by unsupervised classification methods (i.e., cluster analyses). Trend analyses indicated that the annual timing of flood‐rich seasons has generally not shifted over the period of record, but 65 sites with data from 1941 to 2013 revealed increased numbers of June–October floods—a trend driving previously documented increases in Northeast U.S. flood counts per year. These months have been historically flood‐poor at the sites examined, so warm‐season flood potential has increased with possible implications for aquatic and riparian organisms.  相似文献   
108.
国际蓝碳合作发展与中国的选择   总被引:2,自引:0,他引:2  
赵鹏  胡学东 《海洋通报》2019,38(6):613-619
海洋储存了地球上93%的CO_2,是全球最大的碳库。发挥海洋固碳、储碳作用,对应对全球气候变化具有重要意义。《联合国气候变化框架公约》和《巴黎协定》是2020年后国际气候治理的基础,为国际蓝碳合作指明了方向,也提供了国际法依据。当前,国际蓝碳合作从科学研究向纳入国际气候治理方向不断推进,不少国际组织和国家已着手推动蓝碳国际规则制定。中国蓝碳资源分布广泛,特色鲜明,蓝碳发展起步阶段里中国的参与不仅是对全球应对气候变化的重要贡献,更有助于通过蓝碳合作增强我国在全球气候治理和海洋治理领域的影响力和话语权。我国蓝碳发展应从国内、国际两个方面着手。在国内夯实基础、补足短板,加强蓝碳基础研究和实践,建立蓝碳评估标准,加快蓝碳人才队伍建设。在国际上积极参与现有国际蓝碳计划,在"21世纪海上丝绸之路"等机制框架下开展双、多边蓝碳合作,推动全球蓝碳治理,从积极参与向适时引领发展。  相似文献   
109.
The purpose of this study is to estimate long-term SMC and find its relation with soil moisture (SM) of climate station in different depths and NDVI for the growing season. The study area is located in agricultural regions in the North of Mongolia. The Pearson’s correlation methodology was used in this study. We used MODIS and SPOT satellite data and 14 years data for precipitation, temperature and SMC of 38 climate stations. The estimated SMC from this methodology were compared with SM from climate data and NDVI. The estimated SMC was compared with SM of climate stations at a 10-cm depth (r2 = 0.58) and at a 50-cm depth (r2 = 0.38), respectively. From the analysis, it can be seen that the previous month’s SMC affects vegetation growth of the following month, especially from May to August. The methodology can be an advantageous indicator for taking further environmental analysis in the region.  相似文献   
110.
Snowmelt makes an essential component of the hydrological system of Kashmir Himalayas. The present study was carried out to examine the status of Snow Cover Area (SCA) using Moderate Resolution Imaging Spectroradiometer (MODIS) 8-day Snow Cover Product between 2000 and 2016. The intra- and inter-annual variability in SCA and in meteorological parameters was observed and various statistical tests were used to study the interrelationship. Results of statistical analysis indicate decrease in maximum temperature (?0.05 °C/year) and minimum temperatures (?0.02 °C/year) while rise in precipitation (19.13 mm/year). It also showed an increase in annual mean SCA (43.5 sq km) during the study period. The analysis was also carried out on a seasonal basis. The results revealed that in Kashmir Himalayas, climate plays a dominating role in controlling the SCA. The results depict the short-term fluctuations in SCA and show the magnitude of change between two successive values being very large in SCA.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号